
On the topology of the Lü attractor and related systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 485101

(http://iopscience.iop.org/1751-8121/41/48/485101)

Download details:

IP Address: 171.66.16.152

The article was downloaded on 03/06/2010 at 07:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/48
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 485101 (13pp) doi:10.1088/1751-8113/41/48/485101

On the topology of the Lü attractor and related
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Abstract

We use well-established methods of knot theory to study the topological
structure of the set of periodic orbits of the Lü attractor. We show that,
for a specific set of parameters, the Lü attractor is topologically different from
the classical Lorenz attractor, whose dynamics is formed by a double cover
of the simple horseshoe. This argues against the ‘similarity’ between the Lü
and Lorenz attractors, claimed, for these parameter values, by some authors
on the basis of non-topological observations. However, we show that the Lü
system belongs to the Lorenz-like family, since by changing the values of the
parameters, the behaviour of the system follows the behaviour of all members
of this family. An attractor of the Lü kind with higher order symmetry is
constructed and some remarks on the Chen attractor are also presented.

PACS number: 05.45.−a

1. Introduction

Lü and Chen introduced in [11] a simple 3-parameter family of ordinary differential equations
(ODEs), nowadays called the Lü system, which exhibits chaotic behaviour. The equations of
this system are

ẋ = a(y − x)

ẏ = −xz + cy

ż = xy − bz

(1)

where a, b, c are real parameters. In the same paper, Lü and Chen integrated these ODEs
numerically, for fixed a = 36 and b = 3, varying only the third parameter. They observed that,
when 12.7 < c < 17, the attractor generated by (1) is pictorially ‘similar’ to the well-known
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Figure 1. Lorenz attractor (left) for (σ, β, ρ) = (10, 8/3, 28) and Lü attractor (right) for
(a, b, c) = (36, 3, 13).

Lorenz attractor [2]. They also noted that, for 18 < c < 22, the attractor has an intermediate
shape, while for 23 < c < 28.5, it becomes visually ‘similar’ to Chen’s attractor [10]. This
result was also supported in [12] with the aid of Arnol’d’s theory of unfolding of matrices [3].
Indeed, as figure 1 shows, the Lü attractor, for (a, b, c) = (36, 3, 13), ‘looks like’ the Lorenz
attractor, whose equations are

ẋ = σ(y − x)

ẏ = x(ρ − z) − y

ż = xy − βz.

In the present paper, we use the method of topological analysis, introduced by Birman
and Williams in [4] and further developed by Gilmore, Lefranc and Letellier et al [9, 5] (and
references therein). We apply this method to the system obtained when the symmetry of
the Lü system is modded out for (a, b, c) = (36, 3, 13). As proved in [8], the symmetry-
reduced Lorenz system exhibits straightforward (simple) horseshoe dynamics while the results
of our analysis show that the basic mechanism underlying the attractor of system (1) is quite
different. This allows us to argue that the Lü and Lorenz systems have, for specific parameter
values, different topological properties and hence their ‘similarity’ under visual inspection is
deceptive. The symmetry-induced system is then used to construct systems with higher order
symmetries. Interestingly, the same procedure, when applied to the well-known Chen system
indicates an even more complex topological structure, as we shall discuss below.

The similarities observed in these three systems can be explained only under a wider
study of their global behaviour under variation of their parameters. Within such a study, we
present here the perestroika that the Lü system undergoes, which classifies it as a member of
the Lorenz-like family of dynamical systems [15].

This paper is organized as follows: in section 2 we construct a three-dimensional set of
ODEs called the proto-Lü system, which is simpler than the Lü system and allows us to draw
concrete conclusions about system (1). In section 3 topological invariants from knot theory
are used to determine the topological structure of the proto-Lü system. Next, in section 4, we
use the results obtained in [8] combined with our findings, to argue against the equivalence
of the Lorenz and Lü systems for some choices of parameters. In section 5 we justify the use
of the symmetry reduction method, by constructing a system with the same local properties
as system (1), but with a higher order symmetry. Then, in section 6, we argue that the Chen
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attractor possesses an even higher degree of topological complexity, due to its considerably
more complicated topological properties. Finally, the global properties of the Lü system,
as well as the perestroika it undergoes are presented in section 7, allowing us to classify its
dynamical complexity as similar to that of the Lorenz-like family. The last section contains
the conclusions of our work.

2. The proto-Lü system

As is easily verified, system (1) remains invariant under an order two symmetry, expressed by
the involution

R
3 → R

3

(x, y, z) �→ (−x,−y, z).

This means that each orbit of the system is either self-symmetric or possesses a ‘twin’ orbit,
which is symmetric with respect to the above involution.

It is more convenient, for computational as well as other reasons (discussed in
section 5), to perform our analysis on the system obtained after removing this symmetry.
To this end, we use the procedure described by Miranda and Stone in [7] to construct a vector
field in R

3 having no symmetry, but possessing the additional property that each phase curve of
this field corresponds either to a pair of symmetric orbits or to a single self-symmetric orbit of
system (1).

This is achieved through the map

π : R
3 → R

3

(x, y, z) �→ (x2 − y2, 2xy, z).
(2)

Miranda and Stone proved that this map is the quotient map for the involution and is also a
local diffeomorphism away of the z-axis. This means that the Lü system can be transformed to
a new system, called the proto-Lü in accordance with [7]. This new system can be thought of
as the projection of (1) on the orbit space of the above-mentioned symmetry. By that we mean
that pairs of symmetric orbits of the Lü system (under the above symmetry) will be identified
and correspond to a single orbit of the proto-Lü system, while self-symmetric orbits of the Lü
system correspond to a single orbit of the new system.

To obtain this vector field, we only have to write the Lü system in new coordinates, i.e. we
denote by N the quantity x2 + y2 =

√
u2 + v2, whence the equations of the proto-Lü system

are

u̇ = av − a(u + N) + vz − c(N − u)

v̇ = a(N − u) − av − (u + N)z + cv

ż = 1
2v − bz.

(3)

If we integrate system (3) numerically for parameter values (a, b, c) = (36, 3, 13), the attractor
generated is that shown in figure 2.

3. Topological analysis of the proto-Lü system

As expected, the proto-Lü system has two fixed points, namely (0, 0, 0) and (0, 2bc, c). The
first one corresponds to the self-symmetric fixed point (0, 0, 0), while the second corresponds
to the pair of symmetric fixed points (−√

bc,−√
bc, c), (

√
bc,

√
bc, c) of the original system

(1).
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Figure 2. The proto-Lü attractor, where (x, y, z) = (u, v, z).

Figure 3. The first return map of the proto-Lü attractor with respect to the v variable.

We may think of the set of periodic orbits of an attractor as forming a kind of skeleton
of the attractor [9]. Indeed, all other orbits contained in the attractor intertwine between the
periodic orbits. Thus, determining the way that periodic orbits are linked [5], determines
the structure of the attractor. The tools which allow us to study the topological structure of
the periodic orbits come from knot theory, since any periodic orbit of a three-dimensional
dynamical system can be considered as a knot.

A template of a three-dimensional dynamical system is a branched two-manifold
introduced in [4], equipped with a semiflow. The topological structure of the periodic orbits
of the semiflow is identical to the topological structure of the periodic orbits of the dynamical
system corresponding to the template. In this section, we construct the template for the proto-
Lü attractor, which allows us to draw conclusions about the structure of the set of periodic
orbit of the proto-Lü system.

To do that, let us first define a Poincaré section for the system (3) as

P = {(u, v, z) ∈ R
3/z = c, ż > 0} (4)

and construct the first return map for this section with respect to the v variable. The result is
shown in figure 3.
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Figure 4. Templates of the proto-Lü (left) and proto-Lorenz systems (right).

Table 1. Topological invariants for the set of periodic orbits of system (3).

0 01 001 0001 000 01

0 0
01 +1 +1 +1
001 +2 +2
0001 +3
000 01 +4

As seen in figure 3, this map has one critical point at vc = 353.081, separating two
branches, one increasing and one decreasing. This implies that the template describing the
proto-Lü attractor consists also of two branches: one orientation preserving, which we shall
name branch 0, and one orientation reversing, which we call branch 1. Looking at the figure
more carefully, we observe that one more branch seems to exist in the first return map but
this branch is not developed enough to be safely included in our analysis. Indeed, attempts
to include this branch in our analysis showed that it does not change qualitatively the results
described below.

Next, we compute all periodic orbits with period up to 5 located within the attractor. For
the detection of periodic orbits, we used the methodology proposed in [17], and in particular
the so-called differential evolution algorithm. To each periodic orbit we attribute symbolic
names according to the following rule:

S(vn) = 0 if vn < vc and S(vn) = 1 if vn > vc.

Linking and self-linking numbers were computed for this set of periodic orbits and listed in
table 1.

The first row and first column of table 1 contain the symbolic names of the periodic orbits
extracted. The rest of the table presents the topological invariants of these orbits. Specifically,
in the main diagonal we read the self-linking numbers of the orbits, while the off-diagonal
elements are the linking numbers of the orbits, i.e. the half-sum of the signed crossings of a
regular projection of the orbits [9]. Since the linking number of a periodic orbit A with respect
to a periodic orbit B is equal to the linking number of the periodic orbit B with respect to A,
the matrix is symmetric.

Periodic orbits of period 1 and 2 are then used to identify the template describing the
attractor, as shown in figure 4 (left panel). The matrix associated with the template is(

0 +1
+1 −1

)
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where the standard convention mentioned in [6] is used. In the main diagonal of the matrix the
number of signed twistings of each branch of the template twisted around itself is shown, while
the off-diagonal elements represent the number of the signed crossings of the two branches
with each other. Periodic orbits of period 3–5 were also studied to confirm that this matrix
is indeed that describing the topological properties of the attractor. Thus the template on the
left panel of figure 4 captures all the characteristics of the basic mechanism of the proto-Lü
system.

4. Comparison of the Lü and Lorenz attractors

It was pointed out in [11], for the same parameter values as in the present paper, that Lü’s
attractor possesses similar features with the classical Lorenz attractor. Indeed, as we saw in
figure 1, the shapes of these attractors are very ‘similar’. Furthermore, as shown in [12], they
also share a lot of common properties: they both have three fixed points with the same stability
properties, exhibit chaotic behaviour characterized by one positive Lyapunov exponent, and
their routes to chaos are of the same type.

However, there exists no diffeomorphism transforming the Lü system to the Lorenz
equations, in the sense that the two systems do not have the same set of eigenvalues at the
fixed points, a property which does not hold (see, e.g., section 21 of [1], and theorem 1 of
[13]). More importantly, the results of the present paper, when combined with those of [8],
allow us to postulate that there does not exist a homeomorphism mapping the phase space of
the Lü attractor to the phase space of the Lorenz attractor, transforming oriented orbits of one
system to oriented orbits of the other.

This can be easily seen by comparing the templates of the two systems: the template of
the proto-Lorenz system obtained after reducing (in exactly the same way as we did for the
Lü system) the symmetry of the Lorenz system [8] is shown in figure 4 (right panel). The
picture of this template clearly implies that the proto-Lorenz system exhibits simple horseshoe
dynamics, which is not equivalent to the dynamics of the proto-Lü system, as was explained
in section 3.

The difference in the underlying dynamics of these two systems is clearly seen in
figure 4, as the templates differ in the way the branches named 0 and 1 are twisted around each
other. This difference can also be read off from the corresponding matrices characterizing the
templates. The matrix of the proto-Lorenz template(

0 0
0 +1

)

is different from that of the Lü section (given in section 3) and this implies that these two
systems, for the specific parameter values, are topologically not equivalent.

5. Covers of the proto-Lü system

Of course, in the previous sections we did not study the topology of the Lü attractor itself,
but of that generated when the symmetry of the Lü system is modded out, i.e. that of the
proto-Lü attractor. The relation between these two attractors is quite obvious: locally they are
topologically the same, but globally they are not. Hence local topological properties proved
for the proto-Lü system (3) also hold for the Lü equations (1), as well.

Lü’s system is the 2-cover of the proto-Lü system, in the sense that it consists of two copies
of the Lü attractor patched together in a symmetrical way. This can be easily seen in figure 5,
where the projections of these two systems are shown. Lü’s attractor has two symmetrically
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Figure 5. Projection on the x–y and u–v planes of the Lü and proto-Lü systems.

patched wings, each being locally the same with the unique wing of the proto-Lü attractor, as
implied by the local diffeomorphism π introduced in section 2.

The procedure we followed to construct the proto-Lü system can, of course, be reversed,
enabling us to obtain system (1) from system (3). Generalizing this procedure, one can obtain
a series of symmetric attractors. Indeed, as the name implies, proto-Lü is the prototype for a
family of attractors. This so-called family of n-covers of system (3) consists of attractors that
are nothing more than n copies of the proto-Lü system itself, patched symmetrically together
and each having n wings.

In the present section we shall follow this generalized inverting procedure to construct
the 3-cover of the proto-Lü system, as described in detail in [7].

Let us view the phase space R
3 as the cartesian product C × R, where (u, v) represents

the complex plane, under the identification (u, v) ≡ w = u + iv,w ∈ C. Note that the map

γn : C × R → C × R

(w, z) �→ (wn, z)

is a local diffeomorphism away from the z-axis, where n is a natural number equal to the
number of copies we wish to patch together. We observe that when n = 2 this map is the local
diffeomorphism π introduced in section 2.

If L(w, z) denotes the proto-Lü vector field, the following relation holds:

Dγn(Ln(w, z)) = L(wn, z)

where Dγn is the Jacobian matrix of γn and Ln denotes the n-cover of L. To find the equations
for the n-cover of the proto-Lü system we only have to solve this equation for Ln(w, z).

If we do this for n = 2, the result clearly gives system (1), since this is the 2-cover of the
proto-Lü system. We therefore apply the above procedure to n = 3 and obtain the 3-cover of
the proto-Lü system, which reads as

ṗ = cp

3
+

1

3M
((c + a)(q2 − p2) + 2pq(a − z)) − a

3
(p − q) +

qz

3

q̇ = 1

3
((c − a)q − (a + z)p) +

1

3M
((a − z)(p2 − q2) + 2pq(a + c))

ż = 3

2
p2q − 1

2
q3 − bz

(5)

where M denotes the quantity
√

p2 + q2 and (p, q, z) are the new coordinates. This 3-cover
attractor of the proto-Lü system is shown in figure 6. As expected, the attractor has three
wings, each of them corresponding to a copy of the proto-Lü system. In a similar way,
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Figure 6. The 3-cover of the proto-Lü system, for (a, b, c) = (36, 3, 13).
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Figure 7. The attractor of the proto-Chen system, for (a, b, c) = (35, 3, 28).

the 4, 5, . . . etc. covers of the proto-Lü system can be constructed, leading to a series of
corresponding attractors. Their topology is clear: they are just n-symmetrical copies of the
mechanism described by the template in figure 4 (left panel) and this justifies the conclusion
that Lü and Lorenz systems are not orbitally topologically equivalent. The Lorenz system is
the double cover of the standard horseshoe mechanism, while the Lü system is not.

6. Chen’s system

Chen’s system is defined by the equations [10]

ẋ = ay − ax

ẏ = (c − a)x − xz + cy

ż = xy − bz

(6)

and generates a chaotic attractor, e.g. for (a, b, c) = (35, 3, 28). Constructing the
corresponding proto-Chen system, by the same procedure as in section 2, yields

u̇ = (c − a)u + (2a − c)v − (c + a)N + vw

v̇ = (c − 2a)u + (c − a)v + cN − uw − Nw

ż = 1
2v − bw

(7)

where N stands for the quantity
√

u2 + v2. The attractor thus generated for these parameter
values is shown in figure 7.
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The proto-Chen system has two fixed points, as expected, since the Chen system has
three: one is at the origin, and the other two are symmetric ones. The proto-Chen fixed points
are (0, 0, 0) and (0, 126, 21). We therefore define the Poincaré section for this system to be

P = {(u, v,w) ∈ R
3/w = 21}

and construct the first return map with respect to the v variable. If we also fix the u value
at 0, the first return map is shown in figure 8. Comparing with figure 3, we conclude that
the complexity of the proto-Chen attractor is much higher than that of the proto-Lü attractor,
since the proto-Chen’s first return map has multiple branches, implying the existence of more
branches in the template of the attractor. This fact also implies that, for the parameter values
studied, Chen’s attractor is topologically not equivalent to the Lorenz or Lü attractors.

Each branch of a template represents a fundamental way of knotting two different periodic
orbits. We thus argue that the more freedom periodic orbits have to knot around each other the
higher the complexity of the attractor. The number of branches in a template, therefore, can
be used to quantify the topological complexity of an attractor in a way that is perhaps more
fundamental than other dynamical or geometrical properties of the motion.

7. The Lorenz-like family

The fact that the Lü, Lorenz and Chen systems are not equivalent for the parameters mentioned
above does not imply that they do not have common properties globally. It just emphasizes that
for a deeper understanding of these systems one needs to consider a wider range of parameters.

The behaviour of a system depends crucially on its fixed points: there are three
fixed points for the Lü system, namely (0, 0, 0), and the symmetry related (

√
bc,

√
bc, c),

(−√
bc,−√

bc, c). Let us note that one fixed point is always located on the z-axis, while the
remaining two are on the line x = y. Thus, the symmetry axis coincides with the double
nullcline x = y = 0 and remains invariant under the flow, obeying the equation ż = −bz.

The linearized system, along the z-axis, reads

ẋ = −ax + ay

ẏ = −zx + cy

ż = −bz

(8)

9
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Figure 9. The Lü attractor for parameter values (a, b, c) = (36, 3, 20).

allowing us to deduce that one eigenvalue (−b) corresponds to the invariant z-axis while the
other two (c,−a) are related to the flow transverse to the symmetry axis, on the planes

{(x, y, z) ∈ R
3/z = k}, k ∈ R.

The behaviour of the flow at different planes depends on the ‘height’ k of the plane.
In [15] nine dynamical systems are discussed, one of them being the classical Lorenz

equations. They are all invariant under the above-mentioned symmetry and, furthermore,
they all present the same qualitative properties as those of the Lü system described above.
These nine systems also possess an extra characteristic: they all undergo a perestroika, i.e. the
topological structure of the attractor they generate changes as the parameter values vary and
this change is the same for all of them. The tori that bound [9] the corresponding attractors
are of genus 3 for a range of parameter values, but when the parameters vary, they become
tori of genus 1. These nine systems constitute the so-called Lorenz-like family [15].

The exact same perestroika, common to all members of the Lorenz-like family, occurs
in the Lü attractor as well. In figure 9 the projection of the Lü attractor on the (x, y)-plane
is presented for parameter values (a, b, c) = (36, 3, 20). One sees from the shape of the
attractor that it is bounded by a genus 3 torus. When we adjust the parameter values to
(a, b, c) = (36, 3, 28.605), the projection of the attractor is as shown in figure 10, making it
clear that the torus bounding the attractor is of genus 1. This allows us to conclude that the
Lü system also belongs to the Lorenz-like family.

It is worth noting that in paper [12] the matrix unfolding theory of Arnol’d’s [3] is used
to explain the similarities observed in the Lü, Lorenz and Chen systems. Specifically, it is
shown there that the Lü and Chen systems are members of the universal unfolding of the
Lorenz model, even at parameter values for which we have shown that the attractors are
topologically not equivalent. Thus, it is clear that Arnol’d’s theory of matrix unfolding cannot
be invoked to justify the equivalence of dynamics, since it is possible for systems belonging to
the same family to have attractors of topologically different structure. This does not contradict
Arnol’d’s theory since the universal unfolding of an object can unite in the same family objects
of different topological nature.

10
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Figure 10. The Lü attractor for parameter values (a, b, c) = (36, 3, 20).

8. Conclusions

In this paper we have studied the Lü system for a specific set of parameters. We first
constructed a new system, called proto-Lü, obtained by modding out the symmetry exhibited
by the original equations. Then, using well-established methods of knot theory, we studied
the topological organization of the set of periodic orbits and extracted the template which
identifies the attractor.

Combining this result with the fact that the proto-Lorenz system generates an attractor of
a simple horseshoe type, we showed that these two systems are (orbitally) not topologically
equivalent. We thus deduce that the original Lü and Lorenz attractors are not topologically
equivalent, since they are just the 2-covers of their corresponding ‘proto’ systems.

We also constructed the 3-cover of the proto-Lü system to illustrate how one may obtain
attractors with higher order symmetries. Then, we examined the attractor generated by the
Chen system and found that it is considerably more complex than the Lü and Lorenz systems,
according to a notion of topological complexity based on the number of different knot types
that periodic orbits can produce.

The fact that two systems are topologically not equivalent, for one choice of parameter
values, does not imply that they are not equivalent for other parameters. We showed that the Lü
system possesses the same qualitative properties (fixed points and their stability, symmetry,
nullclines, perestroikas) as all nine systems belonging to the so-called Lorenz-like family
studied in [15] and therefore concluded that the Lü system should also be included in that
family.

Another system which generates attractors similar to those of the Lorenz-like family is
presented in [14]. The equations of that system read as

ẋ = a(−x + y + yz)

ẏ = y − xz

ż = −bz + xy.

(9)

Integrating numerically equations (9) for different values of a and b, a series of attractors
is generated, some of which are pictorially similar to the classical Lorenz, Chen and Lü

11
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Figure 11. Attractors generated by system (9) for (a, b) = (2.4, 0.28) (left) and (a, b) = (1.5, 0.2)

(right).
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Figure 12. First return maps for system (9) when (a, b) = (2.4, 0.28) (left) and (a, b) = (1.5, 0.2)

(right).

attractors. Constructing the ‘proto’ system of (9), we obtain the attractors shown in figure 11.
To investigate the optical similarity of the attractor shown in figure 11 (left) with the proto-Lü
attractor and the similarity of the attractor shown in figure 11 (right) with the proto-Chen
attractor we construct their first return maps. The return maps, shown in figure 12 possess four
branches, a fact that implies that system (9) is not similar to the systems studied in previous
paragraphs. The topological inequivalence between system (9) and the previous two systems
can, of course, be seen by the number of fixed points, as system (9) has five fixed points. As we
see now, however, even the mechanism generating the strange attractors of system (9) is quite
different from the corresponding mechanism of the Lorenz-like family. It would be interesting
to investigate further the topological properties of system (9), for different parameter values,
and compare them with analogous properties of the other systems, but that is a topic that we
would like to address in a future publication.
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[13] Lü J, Chen G and Cheng D 2004 A new chaotic system and beyond Int. J. Bifurcation Chaos 14 5
[14] Guang-Yi Wang, Shui-Sheng Qiu, Hong-Wei Li, Cai-Fen Li and Yan Zheng 2006 A new chaotic system and its

circuit realization Chin. Phys. 15,12 2872–7
[15] Letellier C, Amaral G F V and Aguirre L A 2007 Insights into the algebraic structure of Lorenz-like systems

using feedback circuit analysis and piecewise affine models Chaos 17 023104
[16] Letellier C and Gilmore R 2007 Symmetry groups for 3D dynamical systems J. Phys. A: Math. Theor.

40 5597–620
[17] Petalas Y G, Parsopoulos K E and Vrahatis M N Stochastic optimization for detecting periodic orbits of nonlinear

mappings Nonlinear Phenomena in Complex Systems at press

13

http://dx.doi.org/10.1070/RM1971v026n02ABEH003827
http://dx.doi.org/10.1103/PhysRevLett.64.2350
http://dx.doi.org/10.1103/PhysRevA.44.R3419
http://dx.doi.org/10.1016/0375-9601(93)90735-I
http://dx.doi.org/10.1103/PhysRevE.49.3492
http://dx.doi.org/10.1103/RevModPhys.70.1455
http://dx.doi.org/10.1142/S0218127499001024
http://dx.doi.org/10.1142/S0218127402005467
http://dx.doi.org/10.1016/j.chaos.2003.10.030
http://dx.doi.org/10.1088/1009-1963/15/12/018
http://dx.doi.org/10.1063/1.2645725
http://dx.doi.org/10.1088/1751-8113/40/21/011

	1. Introduction
	2. The proto-Lü system
	3. Topological analysis of the proto-Lü system
	4. Comparison of the Lü and Lorenz attractors
	5. Covers of the proto-Lü system
	6. Chen's system
	7. The Lorenz-like family
	8. Conclusions
	Acknowledgments
	References

